Integral of $$$\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}$$$

The calculator will find the integral/antiderivative of $$$\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx$$$.

Solution

Strip out one cosine and write everything else in terms of the sine, using the formula $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ with $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} \cos{\left(x \right)} d x}}}$$

Let $$$u=\sin{\left(x \right)}$$$.

Then $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\cos{\left(x \right)} dx = du$$$.

Thus,

$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{u^{4} \left(1 - u^{2}\right) d u}}}$$

Expand the expression:

$${\color{red}{\int{u^{4} \left(1 - u^{2}\right) d u}}} = {\color{red}{\int{\left(- u^{6} + u^{4}\right)d u}}}$$

Integrate term by term:

$${\color{red}{\int{\left(- u^{6} + u^{4}\right)d u}}} = {\color{red}{\left(\int{u^{4} d u} - \int{u^{6} d u}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=4$$$:

$$- \int{u^{6} d u} + {\color{red}{\int{u^{4} d u}}}=- \int{u^{6} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=- \int{u^{6} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=6$$$:

$$\frac{u^{5}}{5} - {\color{red}{\int{u^{6} d u}}}=\frac{u^{5}}{5} - {\color{red}{\frac{u^{1 + 6}}{1 + 6}}}=\frac{u^{5}}{5} - {\color{red}{\left(\frac{u^{7}}{7}\right)}}$$

Recall that $$$u=\sin{\left(x \right)}$$$:

$$\frac{{\color{red}{u}}^{5}}{5} - \frac{{\color{red}{u}}^{7}}{7} = \frac{{\color{red}{\sin{\left(x \right)}}}^{5}}{5} - \frac{{\color{red}{\sin{\left(x \right)}}}^{7}}{7}$$

Therefore,

$$\int{\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = - \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}$$

Add the constant of integration:

$$\int{\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = - \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}+C$$

Answer

$$$\int \sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = \left(- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}\right) + C$$$A


Please try a new game Rotatly