$$$\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}$$$ 的积分

该计算器将求出$$$\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx$$$

解答

提出一个余弦,并使用公式 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$(令 $$$\alpha=x$$$)将其余部分用正弦表示:

$${\color{red}{\int{\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} \cos{\left(x \right)} d x}}}$$

$$$u=\sin{\left(x \right)}$$$

$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步骤见»),并有$$$\cos{\left(x \right)} dx = du$$$

因此,

$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{u^{4} \left(1 - u^{2}\right) d u}}}$$

Expand the expression:

$${\color{red}{\int{u^{4} \left(1 - u^{2}\right) d u}}} = {\color{red}{\int{\left(- u^{6} + u^{4}\right)d u}}}$$

逐项积分:

$${\color{red}{\int{\left(- u^{6} + u^{4}\right)d u}}} = {\color{red}{\left(\int{u^{4} d u} - \int{u^{6} d u}\right)}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=4$$$

$$- \int{u^{6} d u} + {\color{red}{\int{u^{4} d u}}}=- \int{u^{6} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=- \int{u^{6} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=6$$$

$$\frac{u^{5}}{5} - {\color{red}{\int{u^{6} d u}}}=\frac{u^{5}}{5} - {\color{red}{\frac{u^{1 + 6}}{1 + 6}}}=\frac{u^{5}}{5} - {\color{red}{\left(\frac{u^{7}}{7}\right)}}$$

回忆一下 $$$u=\sin{\left(x \right)}$$$:

$$\frac{{\color{red}{u}}^{5}}{5} - \frac{{\color{red}{u}}^{7}}{7} = \frac{{\color{red}{\sin{\left(x \right)}}}^{5}}{5} - \frac{{\color{red}{\sin{\left(x \right)}}}^{7}}{7}$$

因此,

$$\int{\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = - \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}$$

加上积分常数:

$$\int{\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = - \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}+C$$

答案

$$$\int \sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = \left(- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}\right) + C$$$A


Please try a new game Rotatly