Funktion $$$\ln^{2}\left(x^{2}\right)$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \ln^{2}\left(x^{2}\right)\, dx$$$.
Ratkaisu
Syöte kirjoitetaan muotoon: $$$\int{\ln{\left(x^{2} \right)}^{2} d x}=\int{4 \ln{\left(x \right)}^{2} d x}$$$.
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=4$$$ ja $$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$:
$${\color{red}{\int{4 \ln{\left(x \right)}^{2} d x}}} = {\color{red}{\left(4 \int{\ln{\left(x \right)}^{2} d x}\right)}}$$
Integraalin $$$\int{\ln{\left(x \right)}^{2} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$ ja $$$\operatorname{dv}=dx$$$.
Tällöin $$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d x}=x$$$ (vaiheet ovat nähtävissä »).
Näin ollen,
$$4 {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}=4 {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}=4 {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$$4 x \ln{\left(x \right)}^{2} - 4 {\color{red}{\int{2 \ln{\left(x \right)} d x}}} = 4 x \ln{\left(x \right)}^{2} - 4 {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}$$
Integraalin $$$\int{\ln{\left(x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=\ln{\left(x \right)}$$$ ja $$$\operatorname{dv}=dx$$$.
Tällöin $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d x}=x$$$ (vaiheet ovat nähtävissä »).
Näin ollen,
$$4 x \ln{\left(x \right)}^{2} - 8 {\color{red}{\int{\ln{\left(x \right)} d x}}}=4 x \ln{\left(x \right)}^{2} - 8 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=4 x \ln{\left(x \right)}^{2} - 8 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=1$$$:
$$4 x \ln{\left(x \right)}^{2} - 8 x \ln{\left(x \right)} + 8 {\color{red}{\int{1 d x}}} = 4 x \ln{\left(x \right)}^{2} - 8 x \ln{\left(x \right)} + 8 {\color{red}{x}}$$
Näin ollen,
$$\int{4 \ln{\left(x \right)}^{2} d x} = 4 x \ln{\left(x \right)}^{2} - 8 x \ln{\left(x \right)} + 8 x$$
Sievennä:
$$\int{4 \ln{\left(x \right)}^{2} d x} = 4 x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)$$
Lisää integrointivakio:
$$\int{4 \ln{\left(x \right)}^{2} d x} = 4 x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)+C$$
Vastaus
$$$\int \ln^{2}\left(x^{2}\right)\, dx = 4 x \left(\ln^{2}\left(x\right) - 2 \ln\left(x\right) + 2\right) + C$$$A