Funktion $$$\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$$.
Ratkaisu
Kerro osoittaja ja nimittäjä luvulla $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ ja muunna $$$\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ muotoon $$$\frac{1}{\tan^{2}{\left(x \right)}}$$$:
$${\color{red}{\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}}$$
Kerro osoittaja ja nimittäjä luvulla $$$\cos^{2}{\left(x \right)}$$$ ja muunna $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ muotoon $$$\sec^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\cos^{4}{\left(x \right)} \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}}$$
Esitä kosini tangentin funktiona käyttäen kaavaa $$$\cos^{2}{\left(x \right)}=\frac{1}{\tan^{2}{\left(x \right)} + 1}$$$:
$${\color{red}{\int{\frac{\cos^{4}{\left(x \right)} \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \tan^{2}{\left(x \right)}} d x}}}$$
Olkoon $$$u=\tan{\left(x \right)}$$$.
Tällöin $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sec^{2}{\left(x \right)} dx = du$$$.
Siis,
$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{2} \left(u^{2} + 1\right)^{2}} d u}}}$$
Suorita osamurtokehittely (vaiheet voidaan nähdä kohdassa »):
$${\color{red}{\int{\frac{1}{u^{2} \left(u^{2} + 1\right)^{2}} d u}}} = {\color{red}{\int{\left(- \frac{1}{u^{2} + 1} - \frac{1}{\left(u^{2} + 1\right)^{2}} + \frac{1}{u^{2}}\right)d u}}}$$
Integroi termi kerrallaan:
$${\color{red}{\int{\left(- \frac{1}{u^{2} + 1} - \frac{1}{\left(u^{2} + 1\right)^{2}} + \frac{1}{u^{2}}\right)d u}}} = {\color{red}{\left(\int{\frac{1}{u^{2}} d u} - \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=-2$$$:
$$- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{u^{-2} d u}}}=- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(- u^{-1}\right)}}=- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(- \frac{1}{u}\right)}}$$
Funktion $$$\frac{1}{u^{2} + 1}$$$ integraali on $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} - \frac{1}{u} = - \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - {\color{red}{\operatorname{atan}{\left(u \right)}}} - \frac{1}{u}$$
Integraalin $$$\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}$$$ laskemiseksi sovella osittaisintegrointia $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$ integraaliin $$$\int{\frac{1}{u^{2} + 1} d u}$$$.
Olkoon $$$\operatorname{c}=\frac{1}{u^{2} + 1}$$$ ja $$$\operatorname{dv}=du$$$.
Tällöin $$$\operatorname{dc}=\left(\frac{1}{u^{2} + 1}\right)^{\prime }du=- \frac{2 u}{\left(u^{2} + 1\right)^{2}} du$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d u}=u$$$ (vaiheet ovat nähtävissä »).
Näin ollen,
$$\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}=\frac{1}{u^{2} + 1} \cdot u-\int{u \cdot \left(- \frac{2 u}{\left(u^{2} + 1\right)^{2}}\right) d u}=\frac{u}{u^{2} + 1} - \int{\left(- \frac{2 u^{2}}{\left(u^{2} + 1\right)^{2}}\right)d u}$$
Vedä vakio ulos:
$$\frac{u}{u^{2} + 1} - \int{\left(- \frac{2 u^{2}}{\left(u^{2} + 1\right)^{2}}\right)d u}=\frac{u}{u^{2} + 1} + 2 \int{\frac{u^{2}}{\left(u^{2} + 1\right)^{2}} d u}$$
Kirjoita integraandin osoittaja muodossa $$$u^{2}=u^{2}{\color{red}{+1}}{\color{red}{-1}}$$$ ja jaa:
$$\frac{u}{u^{2} + 1} + 2 \int{\frac{u^{2}}{\left(u^{2} + 1\right)^{2}} d u}=\frac{u}{u^{2} + 1} + 2 \int{\left(- \frac{1}{\left(u^{2} + 1\right)^{2}} + \frac{u^{2} + 1}{\left(u^{2} + 1\right)^{2}}\right)d u}=\frac{u}{u^{2} + 1} + 2 \int{\left(\frac{1}{u^{2} + 1} - \frac{1}{\left(u^{2} + 1\right)^{2}}\right)d u}$$
Jaa integraalit:
$$\frac{u}{u^{2} + 1} + 2 \int{\left(\frac{1}{u^{2} + 1} - \frac{1}{\left(u^{2} + 1\right)^{2}}\right)d u}=\frac{u}{u^{2} + 1} - 2 \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} + 2 \int{\frac{1}{u^{2} + 1} d u}$$
Täten saamme seuraavan yksinkertaisen lineaarisen yhtälön integraalin suhteen:
$$\int{\frac{1}{u^{2} + 1} d u}=\frac{u}{u^{2} + 1} + 2 \int{\frac{1}{u^{2} + 1} d u} - 2 {\color{red}{\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}}}$$
Ratkaisemalla saamme, että
$$\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}=\frac{u}{2 \left(u^{2} + 1\right)} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{2}$$
Näin ollen,
$$- \operatorname{atan}{\left(u \right)} - {\color{red}{\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}}} - \frac{1}{u} = - \operatorname{atan}{\left(u \right)} - {\color{red}{\left(\frac{u}{2 \left(u^{2} + 1\right)} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{2}\right)}} - \frac{1}{u}$$
Funktion $$$\frac{1}{u^{2} + 1}$$$ integraali on $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- \frac{u}{2 \left(u^{2} + 1\right)} - \operatorname{atan}{\left(u \right)} - \frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} - \frac{1}{u} = - \frac{u}{2 \left(u^{2} + 1\right)} - \operatorname{atan}{\left(u \right)} - \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2} - \frac{1}{u}$$
Muista, että $$$u=\tan{\left(x \right)}$$$:
$$- \frac{3 \operatorname{atan}{\left({\color{red}{u}} \right)}}{2} - {\color{red}{u}}^{-1} - \frac{{\color{red}{u}} \left(1 + {\color{red}{u}}^{2}\right)^{-1}}{2} = - \frac{3 \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)}}{2} - {\color{red}{\tan{\left(x \right)}}}^{-1} - \frac{{\color{red}{\tan{\left(x \right)}}} \left(1 + {\color{red}{\tan{\left(x \right)}}}^{2}\right)^{-1}}{2}$$
Näin ollen,
$$\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \frac{3 \operatorname{atan}{\left(\tan{\left(x \right)} \right)}}{2} - \frac{1}{\tan{\left(x \right)}} - \frac{\tan{\left(x \right)}}{2 \left(\tan^{2}{\left(x \right)} + 1\right)}$$
Sievennä:
$$\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \frac{3 x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{1}{\tan{\left(x \right)}}$$
Lisää integrointivakio:
$$\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \frac{3 x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{1}{\tan{\left(x \right)}}+C$$
Vastaus
$$$\int \frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = \left(- \frac{3 x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{1}{\tan{\left(x \right)}}\right) + C$$$A