Integral of $$$\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$

The calculator will find the integral/antiderivative of $$$\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$$.

Solution

Multiply the numerator and denominator by $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ and convert $$$\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ into $$$\frac{1}{\tan^{2}{\left(x \right)}}$$$:

$${\color{red}{\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}}$$

Multiply the numerator and denominator by $$$\cos^{2}{\left(x \right)}$$$ and convert $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ into $$$\sec^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\cos^{4}{\left(x \right)} \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}}$$

Rewrite the cosine in terms of the tangent using the formula $$$\cos^{2}{\left(x \right)}=\frac{1}{\tan^{2}{\left(x \right)} + 1}$$$:

$${\color{red}{\int{\frac{\cos^{4}{\left(x \right)} \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \tan^{2}{\left(x \right)}} d x}}}$$

Let $$$u=\tan{\left(x \right)}$$$.

Then $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\sec^{2}{\left(x \right)} dx = du$$$.

The integral can be rewritten as

$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{2} \left(u^{2} + 1\right)^{2}} d u}}}$$

Perform partial fraction decomposition (steps can be seen »):

$${\color{red}{\int{\frac{1}{u^{2} \left(u^{2} + 1\right)^{2}} d u}}} = {\color{red}{\int{\left(- \frac{1}{u^{2} + 1} - \frac{1}{\left(u^{2} + 1\right)^{2}} + \frac{1}{u^{2}}\right)d u}}}$$

Integrate term by term:

$${\color{red}{\int{\left(- \frac{1}{u^{2} + 1} - \frac{1}{\left(u^{2} + 1\right)^{2}} + \frac{1}{u^{2}}\right)d u}}} = {\color{red}{\left(\int{\frac{1}{u^{2}} d u} - \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:

$$- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{u^{-2} d u}}}=- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(- u^{-1}\right)}}=- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(- \frac{1}{u}\right)}}$$

The integral of $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} - \frac{1}{u} = - \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} - {\color{red}{\operatorname{atan}{\left(u \right)}}} - \frac{1}{u}$$

To calculate the integral $$$\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}$$$, apply integration by parts $$$\int \operatorname{o} \operatorname{dv} = \operatorname{o}\operatorname{v} - \int \operatorname{v} \operatorname{do}$$$ to the integral $$$\int{\frac{1}{u^{2} + 1} d u}$$$.

Let $$$\operatorname{o}=\frac{1}{u^{2} + 1}$$$ and $$$\operatorname{dv}=du$$$.

Then $$$\operatorname{do}=\left(\frac{1}{u^{2} + 1}\right)^{\prime }du=- \frac{2 u}{\left(u^{2} + 1\right)^{2}} du$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d u}=u$$$ (steps can be seen »).

So,

$$\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}=\frac{1}{u^{2} + 1} \cdot u-\int{u \cdot \left(- \frac{2 u}{\left(u^{2} + 1\right)^{2}}\right) d u}=\frac{u}{u^{2} + 1} - \int{\left(- \frac{2 u^{2}}{\left(u^{2} + 1\right)^{2}}\right)d u}$$

Strip out the constant:

$$\frac{u}{u^{2} + 1} - \int{\left(- \frac{2 u^{2}}{\left(u^{2} + 1\right)^{2}}\right)d u}=\frac{u}{u^{2} + 1} + 2 \int{\frac{u^{2}}{\left(u^{2} + 1\right)^{2}} d u}$$

Rewrite the numerator of the integrand as $$$u^{2}=u^{2}{\color{red}{+1}}{\color{red}{-1}}$$$ and split:

$$\frac{u}{u^{2} + 1} + 2 \int{\frac{u^{2}}{\left(u^{2} + 1\right)^{2}} d u}=\frac{u}{u^{2} + 1} + 2 \int{\left(- \frac{1}{\left(u^{2} + 1\right)^{2}} + \frac{u^{2} + 1}{\left(u^{2} + 1\right)^{2}}\right)d u}=\frac{u}{u^{2} + 1} + 2 \int{\left(\frac{1}{u^{2} + 1} - \frac{1}{\left(u^{2} + 1\right)^{2}}\right)d u}$$

Split the integrals:

$$\frac{u}{u^{2} + 1} + 2 \int{\left(\frac{1}{u^{2} + 1} - \frac{1}{\left(u^{2} + 1\right)^{2}}\right)d u}=\frac{u}{u^{2} + 1} - 2 \int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u} + 2 \int{\frac{1}{u^{2} + 1} d u}$$

Thus, we get following simple linear equation with respect to the integral:

$$\int{\frac{1}{u^{2} + 1} d u}=\frac{u}{u^{2} + 1} + 2 \int{\frac{1}{u^{2} + 1} d u} - 2 {\color{red}{\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}}}$$

Solving it we obtain that

$$\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}=\frac{u}{2 \left(u^{2} + 1\right)} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{2}$$

Therefore,

$$- \operatorname{atan}{\left(u \right)} - {\color{red}{\int{\frac{1}{\left(u^{2} + 1\right)^{2}} d u}}} - \frac{1}{u} = - \operatorname{atan}{\left(u \right)} - {\color{red}{\left(\frac{u}{2 \left(u^{2} + 1\right)} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{2}\right)}} - \frac{1}{u}$$

The integral of $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- \frac{u}{2 \left(u^{2} + 1\right)} - \operatorname{atan}{\left(u \right)} - \frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} - \frac{1}{u} = - \frac{u}{2 \left(u^{2} + 1\right)} - \operatorname{atan}{\left(u \right)} - \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2} - \frac{1}{u}$$

Recall that $$$u=\tan{\left(x \right)}$$$:

$$- \frac{3 \operatorname{atan}{\left({\color{red}{u}} \right)}}{2} - {\color{red}{u}}^{-1} - \frac{{\color{red}{u}} \left(1 + {\color{red}{u}}^{2}\right)^{-1}}{2} = - \frac{3 \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)}}{2} - {\color{red}{\tan{\left(x \right)}}}^{-1} - \frac{{\color{red}{\tan{\left(x \right)}}} \left(1 + {\color{red}{\tan{\left(x \right)}}}^{2}\right)^{-1}}{2}$$

Therefore,

$$\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \frac{3 \operatorname{atan}{\left(\tan{\left(x \right)} \right)}}{2} - \frac{1}{\tan{\left(x \right)}} - \frac{\tan{\left(x \right)}}{2 \left(\tan^{2}{\left(x \right)} + 1\right)}$$

Simplify:

$$\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \frac{3 x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{1}{\tan{\left(x \right)}}$$

Add the constant of integration:

$$\int{\frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \frac{3 x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{1}{\tan{\left(x \right)}}+C$$

Answer

$$$\int \frac{\cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = \left(- \frac{3 x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{1}{\tan{\left(x \right)}}\right) + C$$$A


Please try a new game Rotatly