Funktion $$$9 x^{23} - 18$$$ integraali

Laskin löytää funktion $$$9 x^{23} - 18$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(9 x^{23} - 18\right)\, dx$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(9 x^{23} - 18\right)d x}}} = {\color{red}{\left(- \int{18 d x} + \int{9 x^{23} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=18$$$:

$$\int{9 x^{23} d x} - {\color{red}{\int{18 d x}}} = \int{9 x^{23} d x} - {\color{red}{\left(18 x\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=9$$$ ja $$$f{\left(x \right)} = x^{23}$$$:

$$- 18 x + {\color{red}{\int{9 x^{23} d x}}} = - 18 x + {\color{red}{\left(9 \int{x^{23} d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=23$$$:

$$- 18 x + 9 {\color{red}{\int{x^{23} d x}}}=- 18 x + 9 {\color{red}{\frac{x^{1 + 23}}{1 + 23}}}=- 18 x + 9 {\color{red}{\left(\frac{x^{24}}{24}\right)}}$$

Näin ollen,

$$\int{\left(9 x^{23} - 18\right)d x} = \frac{3 x^{24}}{8} - 18 x$$

Sievennä:

$$\int{\left(9 x^{23} - 18\right)d x} = \frac{3 x \left(x^{23} - 48\right)}{8}$$

Lisää integrointivakio:

$$\int{\left(9 x^{23} - 18\right)d x} = \frac{3 x \left(x^{23} - 48\right)}{8}+C$$

Vastaus

$$$\int \left(9 x^{23} - 18\right)\, dx = \frac{3 x \left(x^{23} - 48\right)}{8} + C$$$A


Please try a new game Rotatly