Integral of $$$9 x^{23} - 18$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(9 x^{23} - 18\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(9 x^{23} - 18\right)d x}}} = {\color{red}{\left(- \int{18 d x} + \int{9 x^{23} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=18$$$:
$$\int{9 x^{23} d x} - {\color{red}{\int{18 d x}}} = \int{9 x^{23} d x} - {\color{red}{\left(18 x\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=9$$$ and $$$f{\left(x \right)} = x^{23}$$$:
$$- 18 x + {\color{red}{\int{9 x^{23} d x}}} = - 18 x + {\color{red}{\left(9 \int{x^{23} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=23$$$:
$$- 18 x + 9 {\color{red}{\int{x^{23} d x}}}=- 18 x + 9 {\color{red}{\frac{x^{1 + 23}}{1 + 23}}}=- 18 x + 9 {\color{red}{\left(\frac{x^{24}}{24}\right)}}$$
Therefore,
$$\int{\left(9 x^{23} - 18\right)d x} = \frac{3 x^{24}}{8} - 18 x$$
Simplify:
$$\int{\left(9 x^{23} - 18\right)d x} = \frac{3 x \left(x^{23} - 48\right)}{8}$$
Add the constant of integration:
$$\int{\left(9 x^{23} - 18\right)d x} = \frac{3 x \left(x^{23} - 48\right)}{8}+C$$
Answer
$$$\int \left(9 x^{23} - 18\right)\, dx = \frac{3 x \left(x^{23} - 48\right)}{8} + C$$$A