Integral de $$$9 x^{23} - 18$$$

La calculadora encontrará la integral/antiderivada de $$$9 x^{23} - 18$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(9 x^{23} - 18\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(9 x^{23} - 18\right)d x}}} = {\color{red}{\left(- \int{18 d x} + \int{9 x^{23} d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=18$$$:

$$\int{9 x^{23} d x} - {\color{red}{\int{18 d x}}} = \int{9 x^{23} d x} - {\color{red}{\left(18 x\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=9$$$ y $$$f{\left(x \right)} = x^{23}$$$:

$$- 18 x + {\color{red}{\int{9 x^{23} d x}}} = - 18 x + {\color{red}{\left(9 \int{x^{23} d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=23$$$:

$$- 18 x + 9 {\color{red}{\int{x^{23} d x}}}=- 18 x + 9 {\color{red}{\frac{x^{1 + 23}}{1 + 23}}}=- 18 x + 9 {\color{red}{\left(\frac{x^{24}}{24}\right)}}$$

Por lo tanto,

$$\int{\left(9 x^{23} - 18\right)d x} = \frac{3 x^{24}}{8} - 18 x$$

Simplificar:

$$\int{\left(9 x^{23} - 18\right)d x} = \frac{3 x \left(x^{23} - 48\right)}{8}$$

Añade la constante de integración:

$$\int{\left(9 x^{23} - 18\right)d x} = \frac{3 x \left(x^{23} - 48\right)}{8}+C$$

Respuesta

$$$\int \left(9 x^{23} - 18\right)\, dx = \frac{3 x \left(x^{23} - 48\right)}{8} + C$$$A


Please try a new game Rotatly