Funktion $$$3 x^{5} \cos{\left(3 \right)}$$$ integraali

Laskin löytää funktion $$$3 x^{5} \cos{\left(3 \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int 3 x^{5} \cos{\left(3 \right)}\, dx$$$.

Trigonometriset funktiot odottavat, että argumentti on radiaaneina. Jos haluat antaa argumentin asteina, kerro se luvulla pi/180, esim. kirjoita 45° muodossa 45*pi/180, tai käytä vastaavaa funktiota lisäämällä 'd', esim. kirjoita sin(45°) muodossa sind(45).

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=3 \cos{\left(3 \right)}$$$ ja $$$f{\left(x \right)} = x^{5}$$$:

$${\color{red}{\int{3 x^{5} \cos{\left(3 \right)} d x}}} = {\color{red}{\left(3 \cos{\left(3 \right)} \int{x^{5} d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=5$$$:

$$3 \cos{\left(3 \right)} {\color{red}{\int{x^{5} d x}}}=3 \cos{\left(3 \right)} {\color{red}{\frac{x^{1 + 5}}{1 + 5}}}=3 \cos{\left(3 \right)} {\color{red}{\left(\frac{x^{6}}{6}\right)}}$$

Näin ollen,

$$\int{3 x^{5} \cos{\left(3 \right)} d x} = \frac{x^{6} \cos{\left(3 \right)}}{2}$$

Lisää integrointivakio:

$$\int{3 x^{5} \cos{\left(3 \right)} d x} = \frac{x^{6} \cos{\left(3 \right)}}{2}+C$$

Vastaus

$$$\int 3 x^{5} \cos{\left(3 \right)}\, dx = \frac{x^{6} \cos{\left(3 \right)}}{2} + C$$$A


Please try a new game Rotatly