Integral dari $$$3 x^{5} \cos{\left(3 \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$3 x^{5} \cos{\left(3 \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int 3 x^{5} \cos{\left(3 \right)}\, dx$$$.

Fungsi trigonometri mengharapkan argumen dalam radian. Untuk memasukkan argumen dalam derajat, kalikan dengan pi/180, misalnya tulis 45° sebagai 45*pi/180, atau gunakan fungsi yang sesuai dengan menambahkan 'd', misalnya tulis sin(45°) sebagai sind(45).

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=3 \cos{\left(3 \right)}$$$ dan $$$f{\left(x \right)} = x^{5}$$$:

$${\color{red}{\int{3 x^{5} \cos{\left(3 \right)} d x}}} = {\color{red}{\left(3 \cos{\left(3 \right)} \int{x^{5} d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=5$$$:

$$3 \cos{\left(3 \right)} {\color{red}{\int{x^{5} d x}}}=3 \cos{\left(3 \right)} {\color{red}{\frac{x^{1 + 5}}{1 + 5}}}=3 \cos{\left(3 \right)} {\color{red}{\left(\frac{x^{6}}{6}\right)}}$$

Oleh karena itu,

$$\int{3 x^{5} \cos{\left(3 \right)} d x} = \frac{x^{6} \cos{\left(3 \right)}}{2}$$

Tambahkan konstanta integrasi:

$$\int{3 x^{5} \cos{\left(3 \right)} d x} = \frac{x^{6} \cos{\left(3 \right)}}{2}+C$$

Jawaban

$$$\int 3 x^{5} \cos{\left(3 \right)}\, dx = \frac{x^{6} \cos{\left(3 \right)}}{2} + C$$$A


Please try a new game Rotatly