Funktion $$$- 2 x^{3} + x^{2} - 6 x$$$ integraali

Laskin löytää funktion $$$- 2 x^{3} + x^{2} - 6 x$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- 2 x^{3} + x^{2} - 6 x\right)\, dx$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x}}} = {\color{red}{\left(- \int{6 x d x} + \int{x^{2} d x} - \int{2 x^{3} d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:

$$- \int{6 x d x} - \int{2 x^{3} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{6 x d x} - \int{2 x^{3} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{6 x d x} - \int{2 x^{3} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=6$$$ ja $$$f{\left(x \right)} = x$$$:

$$\frac{x^{3}}{3} - \int{2 x^{3} d x} - {\color{red}{\int{6 x d x}}} = \frac{x^{3}}{3} - \int{2 x^{3} d x} - {\color{red}{\left(6 \int{x d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:

$$\frac{x^{3}}{3} - \int{2 x^{3} d x} - 6 {\color{red}{\int{x d x}}}=\frac{x^{3}}{3} - \int{2 x^{3} d x} - 6 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{3}}{3} - \int{2 x^{3} d x} - 6 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = x^{3}$$$:

$$\frac{x^{3}}{3} - 3 x^{2} - {\color{red}{\int{2 x^{3} d x}}} = \frac{x^{3}}{3} - 3 x^{2} - {\color{red}{\left(2 \int{x^{3} d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=3$$$:

$$\frac{x^{3}}{3} - 3 x^{2} - 2 {\color{red}{\int{x^{3} d x}}}=\frac{x^{3}}{3} - 3 x^{2} - 2 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{x^{3}}{3} - 3 x^{2} - 2 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Näin ollen,

$$\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x} = - \frac{x^{4}}{2} + \frac{x^{3}}{3} - 3 x^{2}$$

Sievennä:

$$\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x} = x^{2} \left(- \frac{x^{2}}{2} + \frac{x}{3} - 3\right)$$

Lisää integrointivakio:

$$\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x} = x^{2} \left(- \frac{x^{2}}{2} + \frac{x}{3} - 3\right)+C$$

Vastaus

$$$\int \left(- 2 x^{3} + x^{2} - 6 x\right)\, dx = x^{2} \left(- \frac{x^{2}}{2} + \frac{x}{3} - 3\right) + C$$$A


Please try a new game Rotatly