$$$- 2 x^{3} + x^{2} - 6 x$$$ 的積分

此計算器將求出 $$$- 2 x^{3} + x^{2} - 6 x$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- 2 x^{3} + x^{2} - 6 x\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x}}} = {\color{red}{\left(- \int{6 x d x} + \int{x^{2} d x} - \int{2 x^{3} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$- \int{6 x d x} - \int{2 x^{3} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{6 x d x} - \int{2 x^{3} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{6 x d x} - \int{2 x^{3} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=6$$$$$$f{\left(x \right)} = x$$$

$$\frac{x^{3}}{3} - \int{2 x^{3} d x} - {\color{red}{\int{6 x d x}}} = \frac{x^{3}}{3} - \int{2 x^{3} d x} - {\color{red}{\left(6 \int{x d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$\frac{x^{3}}{3} - \int{2 x^{3} d x} - 6 {\color{red}{\int{x d x}}}=\frac{x^{3}}{3} - \int{2 x^{3} d x} - 6 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{3}}{3} - \int{2 x^{3} d x} - 6 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$$$$f{\left(x \right)} = x^{3}$$$

$$\frac{x^{3}}{3} - 3 x^{2} - {\color{red}{\int{2 x^{3} d x}}} = \frac{x^{3}}{3} - 3 x^{2} - {\color{red}{\left(2 \int{x^{3} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=3$$$

$$\frac{x^{3}}{3} - 3 x^{2} - 2 {\color{red}{\int{x^{3} d x}}}=\frac{x^{3}}{3} - 3 x^{2} - 2 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{x^{3}}{3} - 3 x^{2} - 2 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

因此,

$$\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x} = - \frac{x^{4}}{2} + \frac{x^{3}}{3} - 3 x^{2}$$

化簡:

$$\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x} = x^{2} \left(- \frac{x^{2}}{2} + \frac{x}{3} - 3\right)$$

加上積分常數:

$$\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x} = x^{2} \left(- \frac{x^{2}}{2} + \frac{x}{3} - 3\right)+C$$

答案

$$$\int \left(- 2 x^{3} + x^{2} - 6 x\right)\, dx = x^{2} \left(- \frac{x^{2}}{2} + \frac{x}{3} - 3\right) + C$$$A


Please try a new game Rotatly