$$$- 2 x^{3} + x^{2} - 6 x$$$ 的积分

该计算器将求出$$$- 2 x^{3} + x^{2} - 6 x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- 2 x^{3} + x^{2} - 6 x\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x}}} = {\color{red}{\left(- \int{6 x d x} + \int{x^{2} d x} - \int{2 x^{3} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$- \int{6 x d x} - \int{2 x^{3} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{6 x d x} - \int{2 x^{3} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{6 x d x} - \int{2 x^{3} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

$$$c=6$$$$$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{x^{3}}{3} - \int{2 x^{3} d x} - {\color{red}{\int{6 x d x}}} = \frac{x^{3}}{3} - \int{2 x^{3} d x} - {\color{red}{\left(6 \int{x d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\frac{x^{3}}{3} - \int{2 x^{3} d x} - 6 {\color{red}{\int{x d x}}}=\frac{x^{3}}{3} - \int{2 x^{3} d x} - 6 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{3}}{3} - \int{2 x^{3} d x} - 6 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

$$$c=2$$$$$$f{\left(x \right)} = x^{3}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{x^{3}}{3} - 3 x^{2} - {\color{red}{\int{2 x^{3} d x}}} = \frac{x^{3}}{3} - 3 x^{2} - {\color{red}{\left(2 \int{x^{3} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$

$$\frac{x^{3}}{3} - 3 x^{2} - 2 {\color{red}{\int{x^{3} d x}}}=\frac{x^{3}}{3} - 3 x^{2} - 2 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{x^{3}}{3} - 3 x^{2} - 2 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

因此,

$$\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x} = - \frac{x^{4}}{2} + \frac{x^{3}}{3} - 3 x^{2}$$

化简:

$$\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x} = x^{2} \left(- \frac{x^{2}}{2} + \frac{x}{3} - 3\right)$$

加上积分常数:

$$\int{\left(- 2 x^{3} + x^{2} - 6 x\right)d x} = x^{2} \left(- \frac{x^{2}}{2} + \frac{x}{3} - 3\right)+C$$

答案

$$$\int \left(- 2 x^{3} + x^{2} - 6 x\right)\, dx = x^{2} \left(- \frac{x^{2}}{2} + \frac{x}{3} - 3\right) + C$$$A


Please try a new game Rotatly