Funktion $$$\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)}\, dt$$$.
Ratkaisu
Olkoon $$$u=1 - \sin{\left(\frac{t}{2} \right)}$$$.
Tällöin $$$du=\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{\prime }dt = - \frac{\cos{\left(\frac{t}{2} \right)}}{2} dt$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\cos{\left(\frac{t}{2} \right)} dt = - 2 du$$$.
Näin ollen,
$${\color{red}{\int{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)} d t}}} = {\color{red}{\int{\left(- 2 u^{2}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-2$$$ ja $$$f{\left(u \right)} = u^{2}$$$:
$${\color{red}{\int{\left(- 2 u^{2}\right)d u}}} = {\color{red}{\left(- 2 \int{u^{2} d u}\right)}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:
$$- 2 {\color{red}{\int{u^{2} d u}}}=- 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Muista, että $$$u=1 - \sin{\left(\frac{t}{2} \right)}$$$:
$$- \frac{2 {\color{red}{u}}^{3}}{3} = - \frac{2 {\color{red}{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)}}^{3}}{3}$$
Näin ollen,
$$\int{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)} d t} = - \frac{2 \left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{3}}{3}$$
Sievennä:
$$\int{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)} d t} = \frac{2 \left(\sin{\left(\frac{t}{2} \right)} - 1\right)^{3}}{3}$$
Lisää integrointivakio:
$$\int{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)} d t} = \frac{2 \left(\sin{\left(\frac{t}{2} \right)} - 1\right)^{3}}{3}+C$$
Vastaus
$$$\int \left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)}\, dt = \frac{2 \left(\sin{\left(\frac{t}{2} \right)} - 1\right)^{3}}{3} + C$$$A