Integralen av $$$\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)}\, dt$$$.
Lösning
Låt $$$u=1 - \sin{\left(\frac{t}{2} \right)}$$$ vara.
Då $$$du=\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{\prime }dt = - \frac{\cos{\left(\frac{t}{2} \right)}}{2} dt$$$ (stegen kan ses »), och vi har att $$$\cos{\left(\frac{t}{2} \right)} dt = - 2 du$$$.
Alltså,
$${\color{red}{\int{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)} d t}}} = {\color{red}{\int{\left(- 2 u^{2}\right)d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-2$$$ och $$$f{\left(u \right)} = u^{2}$$$:
$${\color{red}{\int{\left(- 2 u^{2}\right)d u}}} = {\color{red}{\left(- 2 \int{u^{2} d u}\right)}}$$
Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=2$$$:
$$- 2 {\color{red}{\int{u^{2} d u}}}=- 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Kom ihåg att $$$u=1 - \sin{\left(\frac{t}{2} \right)}$$$:
$$- \frac{2 {\color{red}{u}}^{3}}{3} = - \frac{2 {\color{red}{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)}}^{3}}{3}$$
Alltså,
$$\int{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)} d t} = - \frac{2 \left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{3}}{3}$$
Förenkla:
$$\int{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)} d t} = \frac{2 \left(\sin{\left(\frac{t}{2} \right)} - 1\right)^{3}}{3}$$
Lägg till integrationskonstanten:
$$\int{\left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)} d t} = \frac{2 \left(\sin{\left(\frac{t}{2} \right)} - 1\right)^{3}}{3}+C$$
Svar
$$$\int \left(1 - \sin{\left(\frac{t}{2} \right)}\right)^{2} \cos{\left(\frac{t}{2} \right)}\, dt = \frac{2 \left(\sin{\left(\frac{t}{2} \right)} - 1\right)^{3}}{3} + C$$$A