Funktion $$$\ln\left(x\right) \sin{\left(9 x \right)}$$$ derivaatta
Aiheeseen liittyvä laskin: Derivointilaskin
Syötteesi
Määritä $$$\frac{d}{dx} \left(\ln\left(x\right) \sin{\left(9 x \right)}\right)$$$.
Ratkaisu
Olkoon $$$H{\left(x \right)} = \ln\left(x\right) \sin{\left(9 x \right)}$$$.
Ota logaritmi yhtälön molemmilta puolilta: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\ln\left(x\right) \sin{\left(9 x \right)}\right)$$$.
Kirjoita oikea puoli uudelleen logaritmien ominaisuuksia käyttäen: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)$$$.
Derivoi erikseen yhtälön molemmat puolet: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)\right)$$$.
Derivoi yhtälön vasen puoli.
Funktio $$$\ln\left(H{\left(x \right)}\right)$$$ on kahden funktion $$$f{\left(u \right)} = \ln\left(u\right)$$$ ja $$$g{\left(x \right)} = H{\left(x \right)}$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$Luonnollisen logaritmin derivaatta on $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Palaa alkuperäiseen muuttujaan:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Näin ollen, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Derivoi yhtälön oikea puoli.
Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)\right)}$$Funktio $$$\ln\left(\ln\left(x\right)\right)$$$ on kahden funktion $$$f{\left(u \right)} = \ln\left(u\right)$$$ ja $$$g{\left(x \right)} = \ln\left(x\right)$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right)\right)\right)} + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)$$Luonnollisen logaritmin derivaatta on $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)$$Palaa alkuperäiseen muuttujaan:
$$\frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{{\color{red}\left(\ln\left(x\right)\right)}}$$Funktio $$$\ln\left(\sin{\left(9 x \right)}\right)$$$ on kahden funktion $$$f{\left(u \right)} = \ln\left(u\right)$$$ ja $$$g{\left(x \right)} = \sin{\left(9 x \right)}$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)\right)} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\sin{\left(9 x \right)}\right)\right)} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Luonnollisen logaritmin derivaatta on $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\sin{\left(9 x \right)}\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\sin{\left(9 x \right)}\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Palaa alkuperäiseen muuttujaan:
$$\frac{\frac{d}{dx} \left(\sin{\left(9 x \right)}\right)}{{\color{red}\left(u\right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{\frac{d}{dx} \left(\sin{\left(9 x \right)}\right)}{{\color{red}\left(\sin{\left(9 x \right)}\right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Funktio $$$\sin{\left(9 x \right)}$$$ on kahden funktion $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ja $$$g{\left(x \right)} = 9 x$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(\sin{\left(9 x \right)}\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{{\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(9 x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Sinin derivaatta on $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$$\frac{{\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{{\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Palaa alkuperäiseen muuttujaan:
$$\frac{\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{\cos{\left({\color{red}\left(9 x\right)} \right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = 9$$$ ja $$$f{\left(x \right)} = x$$$:
$$\frac{\cos{\left(9 x \right)} {\color{red}\left(\frac{d}{dx} \left(9 x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{\cos{\left(9 x \right)} {\color{red}\left(9 \frac{d}{dx} \left(x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Luonnollisen logaritmin derivaatta on $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$\frac{9 \cos{\left(9 x \right)} \frac{d}{dx} \left(x\right)}{\sin{\left(9 x \right)}} + \frac{{\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)}}{\ln\left(x\right)} = \frac{9 \cos{\left(9 x \right)} \frac{d}{dx} \left(x\right)}{\sin{\left(9 x \right)}} + \frac{{\color{red}\left(\frac{1}{x}\right)}}{\ln\left(x\right)}$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{9 \cos{\left(9 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)} = \frac{9 \cos{\left(9 x \right)} {\color{red}\left(1\right)}}{\sin{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$Sievennä:
$$\frac{9 \cos{\left(9 x \right)}}{\sin{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)} = \frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$Näin ollen, $$$\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)\right) = \frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$$.
Tästä seuraa, että $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$$.
Siispä $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}\right) H{\left(x \right)} = 9 \ln\left(x\right) \cos{\left(9 x \right)} + \frac{\sin{\left(9 x \right)}}{x}$$$.
Vastaus
$$$\frac{d}{dx} \left(\ln\left(x\right) \sin{\left(9 x \right)}\right) = 9 \ln\left(x\right) \cos{\left(9 x \right)} + \frac{\sin{\left(9 x \right)}}{x}$$$A