Derivata di $$$\ln\left(x\right) \sin{\left(9 x \right)}$$$
Calcolatore correlato: Calcolatore di derivate
Il tuo input
Trova $$$\frac{d}{dx} \left(\ln\left(x\right) \sin{\left(9 x \right)}\right)$$$.
Soluzione
Sia $$$H{\left(x \right)} = \ln\left(x\right) \sin{\left(9 x \right)}$$$.
Prendi il logaritmo di entrambi i membri: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\ln\left(x\right) \sin{\left(9 x \right)}\right)$$$.
Riscrivi il membro di destra usando le proprietà dei logaritmi: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)$$$.
Deriva separatamente entrambi i membri dell'equazione: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)\right)$$$.
Deriva il membro sinistro dell’equazione.
La funzione $$$\ln\left(H{\left(x \right)}\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Torna alla variabile originale:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Quindi, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Deriva il membro destro dell’equazione.
La derivata di una somma/differenza è la somma/differenza delle derivate:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)\right)}$$La funzione $$$\ln\left(\ln\left(x\right)\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = \ln\left(x\right)$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right)\right)\right)} + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)$$La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)$$Torna alla variabile originale:
$$\frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{{\color{red}\left(\ln\left(x\right)\right)}}$$La funzione $$$\ln\left(\sin{\left(9 x \right)}\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = \sin{\left(9 x \right)}$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)\right)} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\sin{\left(9 x \right)}\right)\right)} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\sin{\left(9 x \right)}\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\sin{\left(9 x \right)}\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Torna alla variabile originale:
$$\frac{\frac{d}{dx} \left(\sin{\left(9 x \right)}\right)}{{\color{red}\left(u\right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{\frac{d}{dx} \left(\sin{\left(9 x \right)}\right)}{{\color{red}\left(\sin{\left(9 x \right)}\right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$La funzione $$$\sin{\left(9 x \right)}$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ e $$$g{\left(x \right)} = 9 x$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(\sin{\left(9 x \right)}\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{{\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(9 x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$La derivata del seno è $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$$\frac{{\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{{\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Torna alla variabile originale:
$$\frac{\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{\cos{\left({\color{red}\left(9 x\right)} \right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 9$$$ e $$$f{\left(x \right)} = x$$$:
$$\frac{\cos{\left(9 x \right)} {\color{red}\left(\frac{d}{dx} \left(9 x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{\cos{\left(9 x \right)} {\color{red}\left(9 \frac{d}{dx} \left(x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$La derivata del logaritmo naturale è $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$\frac{9 \cos{\left(9 x \right)} \frac{d}{dx} \left(x\right)}{\sin{\left(9 x \right)}} + \frac{{\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)}}{\ln\left(x\right)} = \frac{9 \cos{\left(9 x \right)} \frac{d}{dx} \left(x\right)}{\sin{\left(9 x \right)}} + \frac{{\color{red}\left(\frac{1}{x}\right)}}{\ln\left(x\right)}$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{9 \cos{\left(9 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)} = \frac{9 \cos{\left(9 x \right)} {\color{red}\left(1\right)}}{\sin{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$Semplifica:
$$\frac{9 \cos{\left(9 x \right)}}{\sin{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)} = \frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$Quindi, $$$\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)\right) = \frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$$.
Pertanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$$.
Pertanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}\right) H{\left(x \right)} = 9 \ln\left(x\right) \cos{\left(9 x \right)} + \frac{\sin{\left(9 x \right)}}{x}$$$.
Risposta
$$$\frac{d}{dx} \left(\ln\left(x\right) \sin{\left(9 x \right)}\right) = 9 \ln\left(x\right) \cos{\left(9 x \right)} + \frac{\sin{\left(9 x \right)}}{x}$$$A