Derivata di $$$\ln\left(x\right) \sin{\left(9 x \right)}$$$

Il calcolatore calcolerà la derivata di $$$\ln\left(x\right) \sin{\left(9 x \right)}$$$ utilizzando la derivazione logaritmica, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di derivate

Lascia vuoto per il rilevamento automatico.
Lascia vuoto se non ti serve la derivata in un punto specifico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\frac{d}{dx} \left(\ln\left(x\right) \sin{\left(9 x \right)}\right)$$$.

Soluzione

Sia $$$H{\left(x \right)} = \ln\left(x\right) \sin{\left(9 x \right)}$$$.

Prendi il logaritmo di entrambi i membri: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\ln\left(x\right) \sin{\left(9 x \right)}\right)$$$.

Riscrivi il membro di destra usando le proprietà dei logaritmi: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)$$$.

Deriva separatamente entrambi i membri dell'equazione: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)\right)$$$.

Deriva il membro sinistro dell’equazione.

La funzione $$$\ln\left(H{\left(x \right)}\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Torna alla variabile originale:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Quindi, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Deriva il membro destro dell’equazione.

La derivata di una somma/differenza è la somma/differenza delle derivate:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)\right)}$$

La funzione $$$\ln\left(\ln\left(x\right)\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = \ln\left(x\right)$$$.

Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right)\right)\right)} + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)$$

La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)$$

Torna alla variabile originale:

$$\frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{{\color{red}\left(\ln\left(x\right)\right)}}$$

La funzione $$$\ln\left(\sin{\left(9 x \right)}\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = \sin{\left(9 x \right)}$$$.

Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\sin{\left(9 x \right)}\right)\right)\right)} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\sin{\left(9 x \right)}\right)\right)} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$

La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\sin{\left(9 x \right)}\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\sin{\left(9 x \right)}\right) + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$

Torna alla variabile originale:

$$\frac{\frac{d}{dx} \left(\sin{\left(9 x \right)}\right)}{{\color{red}\left(u\right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{\frac{d}{dx} \left(\sin{\left(9 x \right)}\right)}{{\color{red}\left(\sin{\left(9 x \right)}\right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$

La funzione $$$\sin{\left(9 x \right)}$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ e $$$g{\left(x \right)} = 9 x$$$.

Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\sin{\left(9 x \right)}\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{{\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(9 x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$

La derivata del seno è $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$$\frac{{\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{{\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$

Torna alla variabile originale:

$$\frac{\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{\cos{\left({\color{red}\left(9 x\right)} \right)} \frac{d}{dx} \left(9 x\right)}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$

Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 9$$$ e $$$f{\left(x \right)} = x$$$:

$$\frac{\cos{\left(9 x \right)} {\color{red}\left(\frac{d}{dx} \left(9 x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)} = \frac{\cos{\left(9 x \right)} {\color{red}\left(9 \frac{d}{dx} \left(x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(x\right)}$$

La derivata del logaritmo naturale è $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$\frac{9 \cos{\left(9 x \right)} \frac{d}{dx} \left(x\right)}{\sin{\left(9 x \right)}} + \frac{{\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)}}{\ln\left(x\right)} = \frac{9 \cos{\left(9 x \right)} \frac{d}{dx} \left(x\right)}{\sin{\left(9 x \right)}} + \frac{{\color{red}\left(\frac{1}{x}\right)}}{\ln\left(x\right)}$$

Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\frac{9 \cos{\left(9 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{\sin{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)} = \frac{9 \cos{\left(9 x \right)} {\color{red}\left(1\right)}}{\sin{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$

Semplifica:

$$\frac{9 \cos{\left(9 x \right)}}{\sin{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)} = \frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$

Quindi, $$$\frac{d}{dx} \left(\ln\left(\ln\left(x\right)\right) + \ln\left(\sin{\left(9 x \right)}\right)\right) = \frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$$.

Pertanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}$$$.

Pertanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\frac{9}{\tan{\left(9 x \right)}} + \frac{1}{x \ln\left(x\right)}\right) H{\left(x \right)} = 9 \ln\left(x\right) \cos{\left(9 x \right)} + \frac{\sin{\left(9 x \right)}}{x}$$$.

Risposta

$$$\frac{d}{dx} \left(\ln\left(x\right) \sin{\left(9 x \right)}\right) = 9 \ln\left(x\right) \cos{\left(9 x \right)} + \frac{\sin{\left(9 x \right)}}{x}$$$A


Please try a new game Rotatly