Funktion $$$x^{8} - 33$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dx} \left(x^{8} - 33\right)$$$.
Ratkaisu
Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$${\color{red}\left(\frac{d}{dx} \left(x^{8} - 33\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{8}\right) - \frac{d}{dx} \left(33\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$, kun $$$n = 8$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{8}\right)\right)} - \frac{d}{dx} \left(33\right) = {\color{red}\left(8 x^{7}\right)} - \frac{d}{dx} \left(33\right)$$Vakion derivaatta on $$$0$$$:
$$8 x^{7} - {\color{red}\left(\frac{d}{dx} \left(33\right)\right)} = 8 x^{7} - {\color{red}\left(0\right)}$$Näin ollen, $$$\frac{d}{dx} \left(x^{8} - 33\right) = 8 x^{7}$$$.
Vastaus
$$$\frac{d}{dx} \left(x^{8} - 33\right) = 8 x^{7}$$$A
Please try a new game Rotatly