Funktion $$$\frac{\theta}{2}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{d\theta} \left(\frac{\theta}{2}\right)$$$.
Ratkaisu
Sovella vakion kerroinsääntöä $$$\frac{d}{d\theta} \left(c f{\left(\theta \right)}\right) = c \frac{d}{d\theta} \left(f{\left(\theta \right)}\right)$$$ käyttäen $$$c = \frac{1}{2}$$$ ja $$$f{\left(\theta \right)} = \theta$$$:
$${\color{red}\left(\frac{d}{d\theta} \left(\frac{\theta}{2}\right)\right)} = {\color{red}\left(\frac{\frac{d}{d\theta} \left(\theta\right)}{2}\right)}$$Sovella potenssisääntöä $$$\frac{d}{d\theta} \left(\theta^{n}\right) = n \theta^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{d\theta} \left(\theta\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{d\theta} \left(\theta\right)\right)}}{2} = \frac{{\color{red}\left(1\right)}}{2}$$Näin ollen, $$$\frac{d}{d\theta} \left(\frac{\theta}{2}\right) = \frac{1}{2}$$$.
Vastaus
$$$\frac{d}{d\theta} \left(\frac{\theta}{2}\right) = \frac{1}{2}$$$A