Funktion $$$\sqrt{2} \sqrt{t}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dt} \left(\sqrt{2} \sqrt{t}\right)$$$.
Ratkaisu
Sovella vakion kerroinsääntöä $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ käyttäen $$$c = \sqrt{2}$$$ ja $$$f{\left(t \right)} = \sqrt{t}$$$:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2} \sqrt{t}\right)\right)} = {\color{red}\left(\sqrt{2} \frac{d}{dt} \left(\sqrt{t}\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$, kun $$$n = \frac{1}{2}$$$:
$$\sqrt{2} {\color{red}\left(\frac{d}{dt} \left(\sqrt{t}\right)\right)} = \sqrt{2} {\color{red}\left(\frac{1}{2 \sqrt{t}}\right)}$$Näin ollen, $$$\frac{d}{dt} \left(\sqrt{2} \sqrt{t}\right) = \frac{\sqrt{2}}{2 \sqrt{t}}$$$.
Vastaus
$$$\frac{d}{dt} \left(\sqrt{2} \sqrt{t}\right) = \frac{\sqrt{2}}{2 \sqrt{t}}$$$A