Funktion $$$\frac{\pi t}{2}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dt} \left(\frac{\pi t}{2}\right)$$$.
Ratkaisu
Sovella vakion kerroinsääntöä $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ käyttäen $$$c = \frac{\pi}{2}$$$ ja $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(\frac{\pi t}{2}\right)\right)} = {\color{red}\left(\frac{\pi}{2} \frac{d}{dt} \left(t\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\frac{\pi {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{2} = \frac{\pi {\color{red}\left(1\right)}}{2}$$Näin ollen, $$$\frac{d}{dt} \left(\frac{\pi t}{2}\right) = \frac{\pi}{2}$$$.
Vastaus
$$$\frac{d}{dt} \left(\frac{\pi t}{2}\right) = \frac{\pi}{2}$$$A