Funktion $$$\ln\left(2 u\right)$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{du} \left(\ln\left(2 u\right)\right)$$$.
Ratkaisu
Funktio $$$\ln\left(2 u\right)$$$ on kahden funktion $$$f{\left(v \right)} = \ln\left(v\right)$$$ ja $$$g{\left(u \right)} = 2 u$$$ yhdistelmä $$$f{\left(g{\left(u \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{du} \left(f{\left(g{\left(u \right)} \right)}\right) = \frac{d}{dv} \left(f{\left(v \right)}\right) \frac{d}{du} \left(g{\left(u \right)}\right)$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(2 u\right)\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(\ln\left(v\right)\right) \frac{d}{du} \left(2 u\right)\right)}$$Luonnollisen logaritmin derivaatta on $$$\frac{d}{dv} \left(\ln\left(v\right)\right) = \frac{1}{v}$$$:
$${\color{red}\left(\frac{d}{dv} \left(\ln\left(v\right)\right)\right)} \frac{d}{du} \left(2 u\right) = {\color{red}\left(\frac{1}{v}\right)} \frac{d}{du} \left(2 u\right)$$Palaa alkuperäiseen muuttujaan:
$$\frac{\frac{d}{du} \left(2 u\right)}{{\color{red}\left(v\right)}} = \frac{\frac{d}{du} \left(2 u\right)}{{\color{red}\left(2 u\right)}}$$Sovella vakion kerroinsääntöä $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ käyttäen $$$c = 2$$$ ja $$$f{\left(u \right)} = u$$$:
$$\frac{{\color{red}\left(\frac{d}{du} \left(2 u\right)\right)}}{2 u} = \frac{{\color{red}\left(2 \frac{d}{du} \left(u\right)\right)}}{2 u}$$Sovella potenssisääntöä $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{du} \left(u\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{du} \left(u\right)\right)}}{u} = \frac{{\color{red}\left(1\right)}}{u}$$Näin ollen, $$$\frac{d}{du} \left(\ln\left(2 u\right)\right) = \frac{1}{u}$$$.
Vastaus
$$$\frac{d}{du} \left(\ln\left(2 u\right)\right) = \frac{1}{u}$$$A