Funktion $$$e^{x} + \sin{\left(y z \right)}$$$ derivaatta muuttujan $$$z$$$ suhteen
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dz} \left(e^{x} + \sin{\left(y z \right)}\right)$$$.
Ratkaisu
Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$${\color{red}\left(\frac{d}{dz} \left(e^{x} + \sin{\left(y z \right)}\right)\right)} = {\color{red}\left(\frac{d}{dz} \left(e^{x}\right) + \frac{d}{dz} \left(\sin{\left(y z \right)}\right)\right)}$$Vakion derivaatta on $$$0$$$:
$${\color{red}\left(\frac{d}{dz} \left(e^{x}\right)\right)} + \frac{d}{dz} \left(\sin{\left(y z \right)}\right) = {\color{red}\left(0\right)} + \frac{d}{dz} \left(\sin{\left(y z \right)}\right)$$Funktio $$$\sin{\left(y z \right)}$$$ on kahden funktion $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ja $$$g{\left(z \right)} = y z$$$ yhdistelmä $$$f{\left(g{\left(z \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dz} \left(f{\left(g{\left(z \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dz} \left(g{\left(z \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dz} \left(\sin{\left(y z \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dz} \left(y z\right)\right)}$$Sinin derivaatta on $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dz} \left(y z\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dz} \left(y z\right)$$Palaa alkuperäiseen muuttujaan:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dz} \left(y z\right) = \cos{\left({\color{red}\left(y z\right)} \right)} \frac{d}{dz} \left(y z\right)$$Sovella vakion kerroinsääntöä $$$\frac{d}{dz} \left(c f{\left(z \right)}\right) = c \frac{d}{dz} \left(f{\left(z \right)}\right)$$$ käyttäen $$$c = y$$$ ja $$$f{\left(z \right)} = z$$$:
$$\cos{\left(y z \right)} {\color{red}\left(\frac{d}{dz} \left(y z\right)\right)} = \cos{\left(y z \right)} {\color{red}\left(y \frac{d}{dz} \left(z\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dz} \left(z^{n}\right) = n z^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dz} \left(z\right) = 1$$$:
$$y \cos{\left(y z \right)} {\color{red}\left(\frac{d}{dz} \left(z\right)\right)} = y \cos{\left(y z \right)} {\color{red}\left(1\right)}$$Näin ollen, $$$\frac{d}{dz} \left(e^{x} + \sin{\left(y z \right)}\right) = y \cos{\left(y z \right)}$$$.
Vastaus
$$$\frac{d}{dz} \left(e^{x} + \sin{\left(y z \right)}\right) = y \cos{\left(y z \right)}$$$A