Funktion $$$e^{x^{2}}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dx} \left(e^{x^{2}}\right)$$$.
Ratkaisu
Funktio $$$e^{x^{2}}$$$ on kahden funktion $$$f{\left(u \right)} = e^{u}$$$ ja $$$g{\left(x \right)} = x^{2}$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{x^{2}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(x^{2}\right)\right)}$$Eksponenttifunktion derivaatta on $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(x^{2}\right)$$Palaa alkuperäiseen muuttujaan:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(x^{2}\right) = e^{{\color{red}\left(x^{2}\right)}} \frac{d}{dx} \left(x^{2}\right)$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$, kun $$$n = 2$$$:
$$e^{x^{2}} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = e^{x^{2}} {\color{red}\left(2 x\right)}$$Näin ollen, $$$\frac{d}{dx} \left(e^{x^{2}}\right) = 2 x e^{x^{2}}$$$.
Vastaus
$$$\frac{d}{dx} \left(e^{x^{2}}\right) = 2 x e^{x^{2}}$$$A