Funktion $$$e^{3 x}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dx} \left(e^{3 x}\right)$$$.
Ratkaisu
Funktio $$$e^{3 x}$$$ on kahden funktion $$$f{\left(u \right)} = e^{u}$$$ ja $$$g{\left(x \right)} = 3 x$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{3 x}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(3 x\right)\right)}$$Eksponenttifunktion derivaatta on $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(3 x\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(3 x\right)$$Palaa alkuperäiseen muuttujaan:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(3 x\right) = e^{{\color{red}\left(3 x\right)}} \frac{d}{dx} \left(3 x\right)$$Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = 3$$$ ja $$$f{\left(x \right)} = x$$$:
$$e^{3 x} {\color{red}\left(\frac{d}{dx} \left(3 x\right)\right)} = e^{3 x} {\color{red}\left(3 \frac{d}{dx} \left(x\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$3 e^{3 x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 3 e^{3 x} {\color{red}\left(1\right)}$$Näin ollen, $$$\frac{d}{dx} \left(e^{3 x}\right) = 3 e^{3 x}$$$.
Vastaus
$$$\frac{d}{dx} \left(e^{3 x}\right) = 3 e^{3 x}$$$A