Funktion $$$9 t^{2} + 4$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dt} \left(9 t^{2} + 4\right)$$$.
Ratkaisu
Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$${\color{red}\left(\frac{d}{dt} \left(9 t^{2} + 4\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(9 t^{2}\right) + \frac{d}{dt} \left(4\right)\right)}$$Vakion derivaatta on $$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(4\right)\right)} + \frac{d}{dt} \left(9 t^{2}\right) = {\color{red}\left(0\right)} + \frac{d}{dt} \left(9 t^{2}\right)$$Sovella vakion kerroinsääntöä $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ käyttäen $$$c = 9$$$ ja $$$f{\left(t \right)} = t^{2}$$$:
$${\color{red}\left(\frac{d}{dt} \left(9 t^{2}\right)\right)} = {\color{red}\left(9 \frac{d}{dt} \left(t^{2}\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$, kun $$$n = 2$$$:
$$9 {\color{red}\left(\frac{d}{dt} \left(t^{2}\right)\right)} = 9 {\color{red}\left(2 t\right)}$$Näin ollen, $$$\frac{d}{dt} \left(9 t^{2} + 4\right) = 18 t$$$.
Vastaus
$$$\frac{d}{dt} \left(9 t^{2} + 4\right) = 18 t$$$A