Funktion $$$2 x^{2} - y$$$ derivaatta muuttujan $$$x$$$ suhteen
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dx} \left(2 x^{2} - y\right)$$$.
Ratkaisu
Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$${\color{red}\left(\frac{d}{dx} \left(2 x^{2} - y\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right) - \frac{dy}{dx}\right)}$$Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = 2$$$ ja $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right)\right)} - \frac{dy}{dx} = {\color{red}\left(2 \frac{d}{dx} \left(x^{2}\right)\right)} - \frac{dy}{dx}$$Vakion derivaatta on $$$0$$$:
$$- {\color{red}\left(\frac{dy}{dx}\right)} + 2 \frac{d}{dx} \left(x^{2}\right) = - {\color{red}\left(0\right)} + 2 \frac{d}{dx} \left(x^{2}\right)$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$, kun $$$n = 2$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 2 {\color{red}\left(2 x\right)}$$Näin ollen, $$$\frac{d}{dx} \left(2 x^{2} - y\right) = 4 x$$$.
Vastaus
$$$\frac{d}{dx} \left(2 x^{2} - y\right) = 4 x$$$A