Funktion $$$1 - 4 v^{2}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dv} \left(1 - 4 v^{2}\right)$$$.
Ratkaisu
Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$${\color{red}\left(\frac{d}{dv} \left(1 - 4 v^{2}\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(1\right) - \frac{d}{dv} \left(4 v^{2}\right)\right)}$$Vakion derivaatta on $$$0$$$:
$${\color{red}\left(\frac{d}{dv} \left(1\right)\right)} - \frac{d}{dv} \left(4 v^{2}\right) = {\color{red}\left(0\right)} - \frac{d}{dv} \left(4 v^{2}\right)$$Sovella vakion kerroinsääntöä $$$\frac{d}{dv} \left(c f{\left(v \right)}\right) = c \frac{d}{dv} \left(f{\left(v \right)}\right)$$$ käyttäen $$$c = 4$$$ ja $$$f{\left(v \right)} = v^{2}$$$:
$$- {\color{red}\left(\frac{d}{dv} \left(4 v^{2}\right)\right)} = - {\color{red}\left(4 \frac{d}{dv} \left(v^{2}\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dv} \left(v^{n}\right) = n v^{n - 1}$$$, kun $$$n = 2$$$:
$$- 4 {\color{red}\left(\frac{d}{dv} \left(v^{2}\right)\right)} = - 4 {\color{red}\left(2 v\right)}$$Näin ollen, $$$\frac{d}{dv} \left(1 - 4 v^{2}\right) = - 8 v$$$.
Vastaus
$$$\frac{d}{dv} \left(1 - 4 v^{2}\right) = - 8 v$$$A