Funktion $$$- x + e^{x}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dx} \left(- x + e^{x}\right)$$$.
Ratkaisu
Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$${\color{red}\left(\frac{d}{dx} \left(- x + e^{x}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(e^{x}\right)\right)}$$Eksponenttifunktion derivaatta on $$$\frac{d}{dx} \left(e^{x}\right) = e^{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{x}\right)\right)} - \frac{d}{dx} \left(x\right) = {\color{red}\left(e^{x}\right)} - \frac{d}{dx} \left(x\right)$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$e^{x} - {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = e^{x} - {\color{red}\left(1\right)}$$Näin ollen, $$$\frac{d}{dx} \left(- x + e^{x}\right) = e^{x} - 1$$$.
Vastaus
$$$\frac{d}{dx} \left(- x + e^{x}\right) = e^{x} - 1$$$A
Please try a new game Rotatly