Funktion $$$- c + z$$$ derivaatta muuttujan $$$c$$$ suhteen
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dc} \left(- c + z\right)$$$.
Ratkaisu
Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$${\color{red}\left(\frac{d}{dc} \left(- c + z\right)\right)} = {\color{red}\left(- \frac{d}{dc} \left(c\right) + \frac{dz}{dc}\right)}$$Sovella potenssisääntöä $$$\frac{d}{dc} \left(c^{n}\right) = n c^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dc} \left(c\right) = 1$$$:
$$- {\color{red}\left(\frac{d}{dc} \left(c\right)\right)} + \frac{dz}{dc} = - {\color{red}\left(1\right)} + \frac{dz}{dc}$$Vakion derivaatta on $$$0$$$:
$${\color{red}\left(\frac{dz}{dc}\right)} - 1 = {\color{red}\left(0\right)} - 1$$Näin ollen, $$$\frac{d}{dc} \left(- c + z\right) = -1$$$.
Vastaus
$$$\frac{d}{dc} \left(- c + z\right) = -1$$$A
Please try a new game Rotatly