Funktion $$$\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)$$$.
Ratkaisu
Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = e^{- \frac{1}{10}}$$$ ja $$$f{\left(x \right)} = x - 10 + e^{\frac{1}{10}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x - 10 + e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}\right)}$$Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x - 10 + e^{\frac{1}{10}}\right)\right)}}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(\frac{d}{dx} \left(x\right) - \frac{d}{dx} \left(10\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)\right)}}{e^{\frac{1}{10}}}$$Vakion derivaatta on $$$0$$$:
$$\frac{- {\color{red}\left(\frac{d}{dx} \left(10\right)\right)} + \frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}} = \frac{- {\color{red}\left(0\right)} + \frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(1\right)} + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}$$Vakion derivaatta on $$$0$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(e^{\frac{1}{10}}\right)\right)} + 1}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(0\right)} + 1}{e^{\frac{1}{10}}}$$Näin ollen, $$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right) = e^{- \frac{1}{10}}$$$.
Vastaus
$$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right) = e^{- \frac{1}{10}}$$$A