Integral de $$$\frac{x^{6} \sqrt{x^{5}}}{\sqrt{x^{7}}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{x^{6} \sqrt{x^{5}}}{\sqrt{x^{7}}}\, dx$$$.
Solución
La entrada se reescribe: $$$\int{\frac{x^{6} \sqrt{x^{5}}}{\sqrt{x^{7}}} d x}=\int{x^{5} d x}$$$.
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=5$$$:
$${\color{red}{\int{x^{5} d x}}}={\color{red}{\frac{x^{1 + 5}}{1 + 5}}}={\color{red}{\left(\frac{x^{6}}{6}\right)}}$$
Por lo tanto,
$$\int{x^{5} d x} = \frac{x^{6}}{6}$$
Añade la constante de integración:
$$\int{x^{5} d x} = \frac{x^{6}}{6}+C$$
Respuesta
$$$\int \frac{x^{6} \sqrt{x^{5}}}{\sqrt{x^{7}}}\, dx = \frac{x^{6}}{6} + C$$$A