Integral of $$$\frac{x^{6} \sqrt{x^{5}}}{\sqrt{x^{7}}}$$$

The calculator will find the integral/antiderivative of $$$\frac{x^{6} \sqrt{x^{5}}}{\sqrt{x^{7}}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{x^{6} \sqrt{x^{5}}}{\sqrt{x^{7}}}\, dx$$$.

Solution

The input is rewritten: $$$\int{\frac{x^{6} \sqrt{x^{5}}}{\sqrt{x^{7}}} d x}=\int{x^{5} d x}$$$.

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=5$$$:

$${\color{red}{\int{x^{5} d x}}}={\color{red}{\frac{x^{1 + 5}}{1 + 5}}}={\color{red}{\left(\frac{x^{6}}{6}\right)}}$$

Therefore,

$$\int{x^{5} d x} = \frac{x^{6}}{6}$$

Add the constant of integration:

$$\int{x^{5} d x} = \frac{x^{6}}{6}+C$$

Answer

$$$\int \frac{x^{6} \sqrt{x^{5}}}{\sqrt{x^{7}}}\, dx = \frac{x^{6}}{6} + C$$$A


Please try a new game Rotatly