Integral de $$$\frac{1}{\frac{x}{2} - 450}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{1}{\frac{x}{2} - 450}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{1}{\frac{x}{2} - 450}\, dx$$$.

Solución

Sea $$$u=\frac{x}{2} - 450$$$.

Entonces $$$du=\left(\frac{x}{2} - 450\right)^{\prime }dx = \frac{dx}{2}$$$ (los pasos pueden verse »), y obtenemos que $$$dx = 2 du$$$.

Por lo tanto,

$${\color{red}{\int{\frac{1}{\frac{x}{2} - 450} d x}}} = {\color{red}{\int{\frac{2}{u} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ y $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\frac{2}{u} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recordemos que $$$u=\frac{x}{2} - 450$$$:

$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(\frac{x}{2} - 450\right)}}}\right| \right)}$$

Por lo tanto,

$$\int{\frac{1}{\frac{x}{2} - 450} d x} = 2 \ln{\left(\left|{\frac{x}{2} - 450}\right| \right)}$$

Simplificar:

$$\int{\frac{1}{\frac{x}{2} - 450} d x} = 2 \ln{\left(\left|{x - 900}\right| \right)} - 2 \ln{\left(2 \right)}$$

Añadir la constante de integración (y eliminar la constante de la expresión):

$$\int{\frac{1}{\frac{x}{2} - 450} d x} = 2 \ln{\left(\left|{x - 900}\right| \right)}+C$$

Respuesta

$$$\int \frac{1}{\frac{x}{2} - 450}\, dx = 2 \ln\left(\left|{x - 900}\right|\right) + C$$$A


Please try a new game Rotatly