Integral of $$$\frac{1}{\frac{x}{2} - 450}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\frac{x}{2} - 450}\, dx$$$.
Solution
Let $$$u=\frac{x}{2} - 450$$$.
Then $$$du=\left(\frac{x}{2} - 450\right)^{\prime }dx = \frac{dx}{2}$$$ (steps can be seen »), and we have that $$$dx = 2 du$$$.
Thus,
$${\color{red}{\int{\frac{1}{\frac{x}{2} - 450} d x}}} = {\color{red}{\int{\frac{2}{u} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{2}{u} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=\frac{x}{2} - 450$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(\frac{x}{2} - 450\right)}}}\right| \right)}$$
Therefore,
$$\int{\frac{1}{\frac{x}{2} - 450} d x} = 2 \ln{\left(\left|{\frac{x}{2} - 450}\right| \right)}$$
Simplify:
$$\int{\frac{1}{\frac{x}{2} - 450} d x} = 2 \ln{\left(\left|{x - 900}\right| \right)} - 2 \ln{\left(2 \right)}$$
Add the constant of integration (and remove the constant from the expression):
$$\int{\frac{1}{\frac{x}{2} - 450} d x} = 2 \ln{\left(\left|{x - 900}\right| \right)}+C$$
Answer
$$$\int \frac{1}{\frac{x}{2} - 450}\, dx = 2 \ln\left(\left|{x - 900}\right|\right) + C$$$A