Integral de $$$\frac{1}{\frac{x}{2} - 450}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{1}{\frac{x}{2} - 450}\, dx$$$.
Solução
Seja $$$u=\frac{x}{2} - 450$$$.
Então $$$du=\left(\frac{x}{2} - 450\right)^{\prime }dx = \frac{dx}{2}$$$ (veja os passos »), e obtemos $$$dx = 2 du$$$.
Assim,
$${\color{red}{\int{\frac{1}{\frac{x}{2} - 450} d x}}} = {\color{red}{\int{\frac{2}{u} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=2$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{2}{u} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recorde que $$$u=\frac{x}{2} - 450$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(\frac{x}{2} - 450\right)}}}\right| \right)}$$
Portanto,
$$\int{\frac{1}{\frac{x}{2} - 450} d x} = 2 \ln{\left(\left|{\frac{x}{2} - 450}\right| \right)}$$
Simplifique:
$$\int{\frac{1}{\frac{x}{2} - 450} d x} = 2 \ln{\left(\left|{x - 900}\right| \right)} - 2 \ln{\left(2 \right)}$$
Adicione a constante de integração (e remova a constante da expressão):
$$\int{\frac{1}{\frac{x}{2} - 450} d x} = 2 \ln{\left(\left|{x - 900}\right| \right)}+C$$
Resposta
$$$\int \frac{1}{\frac{x}{2} - 450}\, dx = 2 \ln\left(\left|{x - 900}\right|\right) + C$$$A