Derivada de $$$\tan{\left(\frac{x}{4} \right)}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dx} \left(\tan{\left(\frac{x}{4} \right)}\right)$$$.
Solución
La función $$$\tan{\left(\frac{x}{4} \right)}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \tan{\left(u \right)}$$$ y $$$g{\left(x \right)} = \frac{x}{4}$$$.
Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\tan{\left(\frac{x}{4} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{4}\right)\right)}$$La derivada de la tangente es $$$\frac{d}{du} \left(\tan{\left(u \right)}\right) = \sec^{2}{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{4}\right) = {\color{red}\left(\sec^{2}{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{4}\right)$$Volver a la variable original:
$$\sec^{2}{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{4}\right) = \sec^{2}{\left({\color{red}\left(\frac{x}{4}\right)} \right)} \frac{d}{dx} \left(\frac{x}{4}\right)$$Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = \frac{1}{4}$$$ y $$$f{\left(x \right)} = x$$$:
$$\sec^{2}{\left(\frac{x}{4} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{4}\right)\right)} = \sec^{2}{\left(\frac{x}{4} \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{4}\right)}$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{\sec^{2}{\left(\frac{x}{4} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{4} = \frac{\sec^{2}{\left(\frac{x}{4} \right)} {\color{red}\left(1\right)}}{4}$$Por lo tanto, $$$\frac{d}{dx} \left(\tan{\left(\frac{x}{4} \right)}\right) = \frac{\sec^{2}{\left(\frac{x}{4} \right)}}{4}$$$.
Respuesta
$$$\frac{d}{dx} \left(\tan{\left(\frac{x}{4} \right)}\right) = \frac{\sec^{2}{\left(\frac{x}{4} \right)}}{4}$$$A