Derivada de $$$\sin{\left(\frac{x}{2} - 1 \right)}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right)$$$.
Solución
La función $$$\sin{\left(\frac{x}{2} - 1 \right)}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ y $$$g{\left(x \right)} = \frac{x}{2} - 1$$$.
Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2} - 1\right)\right)}$$La derivada del seno es $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right)$$Volver a la variable original:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right) = \cos{\left({\color{red}\left(\frac{x}{2} - 1\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right)$$La derivada de una suma/diferencia es la suma/diferencia de las derivadas:
$$\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2} - 1\right)\right)} = \cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right) - \frac{d}{dx} \left(1\right)\right)}$$La derivada de una constante es $$$0$$$:
$$\left(- {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(\frac{x}{2}\right)\right) \cos{\left(\frac{x}{2} - 1 \right)} = \left(- {\color{red}\left(0\right)} + \frac{d}{dx} \left(\frac{x}{2}\right)\right) \cos{\left(\frac{x}{2} - 1 \right)}$$Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = \frac{1}{2}$$$ y $$$f{\left(x \right)} = x$$$:
$$\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} = \cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = \frac{\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(1\right)}}{2}$$Por lo tanto, $$$\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right) = \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{2}$$$.
Respuesta
$$$\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right) = \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{2}$$$A