Derivada de $$$\sin{\left(4 t \right)}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dt} \left(\sin{\left(4 t \right)}\right)$$$.
Solución
La función $$$\sin{\left(4 t \right)}$$$ es la composición $$$f{\left(g{\left(t \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ y $$$g{\left(t \right)} = 4 t$$$.
Aplica la regla de la cadena $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dt} \left(\sin{\left(4 t \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dt} \left(4 t\right)\right)}$$La derivada del seno es $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dt} \left(4 t\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dt} \left(4 t\right)$$Volver a la variable original:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(4 t\right) = \cos{\left({\color{red}\left(4 t\right)} \right)} \frac{d}{dt} \left(4 t\right)$$Aplica la regla del factor constante $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ con $$$c = 4$$$ y $$$f{\left(t \right)} = t$$$:
$$\cos{\left(4 t \right)} {\color{red}\left(\frac{d}{dt} \left(4 t\right)\right)} = \cos{\left(4 t \right)} {\color{red}\left(4 \frac{d}{dt} \left(t\right)\right)}$$Aplica la regla de la potencia $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$4 \cos{\left(4 t \right)} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = 4 \cos{\left(4 t \right)} {\color{red}\left(1\right)}$$Por lo tanto, $$$\frac{d}{dt} \left(\sin{\left(4 t \right)}\right) = 4 \cos{\left(4 t \right)}$$$.
Respuesta
$$$\frac{d}{dt} \left(\sin{\left(4 t \right)}\right) = 4 \cos{\left(4 t \right)}$$$A