Derivada de $$$\ln\left(\frac{t}{t + 1}\right)$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)$$$.
Solución
La función $$$\ln\left(\frac{t}{t + 1}\right)$$$ es la composición $$$f{\left(g{\left(t \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(t \right)} = \frac{t}{t + 1}$$$.
Aplica la regla de la cadena $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}$$La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right)$$Volver a la variable original:
$$\frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(\frac{t}{t + 1}\right)}}$$Aplica la regla del cociente $$$\frac{d}{dt} \left(\frac{f{\left(t \right)}}{g{\left(t \right)}}\right) = \frac{\frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} - f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)}{g^{2}{\left(t \right)}}$$$ con $$$f{\left(t \right)} = t$$$ y $$$g{\left(t \right)} = t + 1$$$:
$$\frac{\left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}}{t} = \frac{\left(t + 1\right) {\color{red}\left(\frac{\frac{d}{dt} \left(t\right) \left(t + 1\right) - t \frac{d}{dt} \left(t + 1\right)}{\left(t + 1\right)^{2}}\right)}}{t}$$Aplica la regla de la potencia $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{t \left(t + 1\right)} = \frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(1\right)}}{t \left(t + 1\right)}$$La derivada de una suma/diferencia es la suma/diferencia de las derivadas:
$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t + 1\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right) + \frac{d}{dt} \left(1\right)\right)} + t + 1}{t \left(t + 1\right)}$$La derivada de una constante es $$$0$$$:
$$\frac{- t \left({\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)} = \frac{- t \left({\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)}$$Aplica la regla de la potencia $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(1\right)} + t + 1}{t \left(t + 1\right)}$$Por lo tanto, $$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$.
Respuesta
$$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$A