Derivada de $$$\ln\left(2 u\right)$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{du} \left(\ln\left(2 u\right)\right)$$$.
Solución
La función $$$\ln\left(2 u\right)$$$ es la composición $$$f{\left(g{\left(u \right)} \right)}$$$ de dos funciones $$$f{\left(v \right)} = \ln\left(v\right)$$$ y $$$g{\left(u \right)} = 2 u$$$.
Aplica la regla de la cadena $$$\frac{d}{du} \left(f{\left(g{\left(u \right)} \right)}\right) = \frac{d}{dv} \left(f{\left(v \right)}\right) \frac{d}{du} \left(g{\left(u \right)}\right)$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(2 u\right)\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(\ln\left(v\right)\right) \frac{d}{du} \left(2 u\right)\right)}$$La derivada del logaritmo natural es $$$\frac{d}{dv} \left(\ln\left(v\right)\right) = \frac{1}{v}$$$:
$${\color{red}\left(\frac{d}{dv} \left(\ln\left(v\right)\right)\right)} \frac{d}{du} \left(2 u\right) = {\color{red}\left(\frac{1}{v}\right)} \frac{d}{du} \left(2 u\right)$$Volver a la variable original:
$$\frac{\frac{d}{du} \left(2 u\right)}{{\color{red}\left(v\right)}} = \frac{\frac{d}{du} \left(2 u\right)}{{\color{red}\left(2 u\right)}}$$Aplica la regla del factor constante $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ con $$$c = 2$$$ y $$$f{\left(u \right)} = u$$$:
$$\frac{{\color{red}\left(\frac{d}{du} \left(2 u\right)\right)}}{2 u} = \frac{{\color{red}\left(2 \frac{d}{du} \left(u\right)\right)}}{2 u}$$Aplica la regla de la potencia $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{du} \left(u\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{du} \left(u\right)\right)}}{u} = \frac{{\color{red}\left(1\right)}}{u}$$Por lo tanto, $$$\frac{d}{du} \left(\ln\left(2 u\right)\right) = \frac{1}{u}$$$.
Respuesta
$$$\frac{d}{du} \left(\ln\left(2 u\right)\right) = \frac{1}{u}$$$A