Derivada de $$$\frac{\cosh{\left(u \right)}}{3}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{du} \left(\frac{\cosh{\left(u \right)}}{3}\right)$$$.
Solución
Aplica la regla del factor constante $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ con $$$c = \frac{1}{3}$$$ y $$$f{\left(u \right)} = \cosh{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\frac{\cosh{\left(u \right)}}{3}\right)\right)} = {\color{red}\left(\frac{\frac{d}{du} \left(\cosh{\left(u \right)}\right)}{3}\right)}$$La derivada del coseno hiperbólico es $$$\frac{d}{du} \left(\cosh{\left(u \right)}\right) = \sinh{\left(u \right)}$$$:
$$\frac{{\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)}\right)\right)}}{3} = \frac{{\color{red}\left(\sinh{\left(u \right)}\right)}}{3}$$Por lo tanto, $$$\frac{d}{du} \left(\frac{\cosh{\left(u \right)}}{3}\right) = \frac{\sinh{\left(u \right)}}{3}$$$.
Respuesta
$$$\frac{d}{du} \left(\frac{\cosh{\left(u \right)}}{3}\right) = \frac{\sinh{\left(u \right)}}{3}$$$A