Derivada de $$$\cos{\left(t \right)} + 1$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right)$$$.
Solución
La derivada de una suma/diferencia es la suma/diferencia de las derivadas:
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right) + \frac{d}{dt} \left(1\right)\right)}$$La derivada de una constante es $$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(\cos{\left(t \right)}\right) = {\color{red}\left(0\right)} + \frac{d}{dt} \left(\cos{\left(t \right)}\right)$$La derivada del coseno es $$$\frac{d}{dt} \left(\cos{\left(t \right)}\right) = - \sin{\left(t \right)}$$$:
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right)\right)} = {\color{red}\left(- \sin{\left(t \right)}\right)}$$Por lo tanto, $$$\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right) = - \sin{\left(t \right)}$$$.
Respuesta
$$$\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right) = - \sin{\left(t \right)}$$$A
Please try a new game Rotatly