Derivada de $$$\operatorname{acosh}{\left(x \right)}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right)$$$.
Solución
La derivada del coseno hiperbólico inverso es $$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right) = \frac{1}{\sqrt{x - 1} \sqrt{x + 1}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{1}{\sqrt{x - 1} \sqrt{x + 1}}\right)}$$Por lo tanto, $$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right) = \frac{1}{\sqrt{x - 1} \sqrt{x + 1}}$$$.
Respuesta
$$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right) = \frac{1}{\sqrt{x - 1} \sqrt{x + 1}}$$$A
Please try a new game Rotatly