Derivada de $$$3 \ln\left(x\right)$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dx} \left(3 \ln\left(x\right)\right)$$$.
Solución
Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 3$$$ y $$$f{\left(x \right)} = \ln\left(x\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(3 \ln\left(x\right)\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$La derivada del logaritmo natural es $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$3 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = 3 {\color{red}\left(\frac{1}{x}\right)}$$Por lo tanto, $$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{3}{x}$$$.
Respuesta
$$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{3}{x}$$$A