Derivada de $$$\frac{2 y}{x}$$$ con respecto a $$$y$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dy} \left(\frac{2 y}{x}\right)$$$.
Solución
Aplica la regla del factor constante $$$\frac{d}{dy} \left(c f{\left(y \right)}\right) = c \frac{d}{dy} \left(f{\left(y \right)}\right)$$$ con $$$c = \frac{2}{x}$$$ y $$$f{\left(y \right)} = y$$$:
$${\color{red}\left(\frac{d}{dy} \left(\frac{2 y}{x}\right)\right)} = {\color{red}\left(\frac{2}{x} \frac{d}{dy} \left(y\right)\right)}$$Aplica la regla de la potencia $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dy} \left(y\right) = 1$$$:
$$\frac{2 {\color{red}\left(\frac{d}{dy} \left(y\right)\right)}}{x} = \frac{2 {\color{red}\left(1\right)}}{x}$$Por lo tanto, $$$\frac{d}{dy} \left(\frac{2 y}{x}\right) = \frac{2}{x}$$$.
Respuesta
$$$\frac{d}{dy} \left(\frac{2 y}{x}\right) = \frac{2}{x}$$$A