Derivada de $$$\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}$$$ con respecto a $$$u$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{du} \left(\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}\right)$$$.
Solución
Aplica la regla del factor constante $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ con $$$c = \frac{2}{\left|{y}\right|}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}\right)\right)} = {\color{red}\left(\frac{2}{\left|{y}\right|} \frac{d}{du} \left(\sin{\left(u \right)}\right)\right)}$$La derivada del seno es $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$$\frac{2 {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)}}{\left|{y}\right|} = \frac{2 {\color{red}\left(\cos{\left(u \right)}\right)}}{\left|{y}\right|}$$Por lo tanto, $$$\frac{d}{du} \left(\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}\right) = \frac{2 \cos{\left(u \right)}}{\left|{y}\right|}$$$.
Respuesta
$$$\frac{d}{du} \left(\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}\right) = \frac{2 \cos{\left(u \right)}}{\left|{y}\right|}$$$A