Derivada de $$$- \frac{141 p t}{800} + \frac{1673}{500}$$$ con respecto a $$$t$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right)$$$.
Solución
La derivada de una suma/diferencia es la suma/diferencia de las derivadas:
$${\color{red}\left(\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right)\right)} = {\color{red}\left(- \frac{d}{dt} \left(\frac{141 p t}{800}\right) + \frac{d}{dt} \left(\frac{1673}{500}\right)\right)}$$Aplica la regla del factor constante $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ con $$$c = \frac{141 p}{800}$$$ y $$$f{\left(t \right)} = t$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\frac{141 p t}{800}\right)\right)} + \frac{d}{dt} \left(\frac{1673}{500}\right) = - {\color{red}\left(\frac{141 p}{800} \frac{d}{dt} \left(t\right)\right)} + \frac{d}{dt} \left(\frac{1673}{500}\right)$$Aplica la regla de la potencia $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- \frac{141 p {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{800} + \frac{d}{dt} \left(\frac{1673}{500}\right) = - \frac{141 p {\color{red}\left(1\right)}}{800} + \frac{d}{dt} \left(\frac{1673}{500}\right)$$La derivada de una constante es $$$0$$$:
$$- \frac{141 p}{800} + {\color{red}\left(\frac{d}{dt} \left(\frac{1673}{500}\right)\right)} = - \frac{141 p}{800} + {\color{red}\left(0\right)}$$Por lo tanto, $$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right) = - \frac{141 p}{800}$$$.
Respuesta
$$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right) = - \frac{141 p}{800}$$$A