Derivada de $$$\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)$$$.
Solución
Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = e^{- \frac{1}{10}}$$$ y $$$f{\left(x \right)} = x - 10 + e^{\frac{1}{10}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x - 10 + e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}\right)}$$La derivada de una suma/diferencia es la suma/diferencia de las derivadas:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x - 10 + e^{\frac{1}{10}}\right)\right)}}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(\frac{d}{dx} \left(x\right) - \frac{d}{dx} \left(10\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)\right)}}{e^{\frac{1}{10}}}$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)} - \frac{d}{dx} \left(10\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(1\right)} - \frac{d}{dx} \left(10\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}$$La derivada de una constante es $$$0$$$:
$$\frac{- {\color{red}\left(\frac{d}{dx} \left(10\right)\right)} + \frac{d}{dx} \left(e^{\frac{1}{10}}\right) + 1}{e^{\frac{1}{10}}} = \frac{- {\color{red}\left(0\right)} + \frac{d}{dx} \left(e^{\frac{1}{10}}\right) + 1}{e^{\frac{1}{10}}}$$La derivada de una constante es $$$0$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(e^{\frac{1}{10}}\right)\right)} + 1}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(0\right)} + 1}{e^{\frac{1}{10}}}$$Por lo tanto, $$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right) = e^{- \frac{1}{10}}$$$.
Respuesta
$$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right) = e^{- \frac{1}{10}}$$$A