Derivada de $$$\frac{x^{3} - 2 x^{2}}{x^{2} + 1}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right)$$$.
Solución
Aplica la regla del cociente $$$\frac{d}{dx} \left(\frac{f{\left(x \right)}}{g{\left(x \right)}}\right) = \frac{\frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} - f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)}{g^{2}{\left(x \right)}}$$$ con $$$f{\left(x \right)} = x^{3} - 2 x^{2}$$$ y $$$g{\left(x \right)} = x^{2} + 1$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x^{3} - 2 x^{2}\right) \left(x^{2} + 1\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}\right)}$$La derivada de una suma/diferencia es la suma/diferencia de las derivadas:
$$\frac{\left(x^{2} + 1\right) {\color{red}\left(\frac{d}{dx} \left(x^{3} - 2 x^{2}\right)\right)} - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(2 x^{2}\right)\right)} - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 3$$$:
$$\frac{\left(x^{2} + 1\right) \left({\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} - \frac{d}{dx} \left(2 x^{2}\right)\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left({\color{red}\left(3 x^{2}\right)} - \frac{d}{dx} \left(2 x^{2}\right)\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 2$$$ y $$$f{\left(x \right)} = x^{2}$$$:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - {\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right)\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - {\color{red}\left(2 \frac{d}{dx} \left(x^{2}\right)\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 2$$$:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 2 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 2 {\color{red}\left(2 x\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$La derivada de una suma/diferencia es la suma/diferencia de las derivadas:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(\frac{d}{dx} \left(x^{2} + 1\right)\right)}}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(1\right)\right)}}{\left(x^{2} + 1\right)^{2}}$$La derivada de una constante es $$$0$$$:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{\left(x^{2} + 1\right)^{2}}$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 2$$$:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(2 x\right)}}{\left(x^{2} + 1\right)^{2}}$$Simplificar:
$$\frac{- 2 x \left(x^{3} - 2 x^{2}\right) + \left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right)}{\left(x^{2} + 1\right)^{2}} = \frac{x \left(x - 1\right) \left(x^{2} + x + 4\right)}{\left(x^{2} + 1\right)^{2}}$$Por lo tanto, $$$\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right) = \frac{x \left(x - 1\right) \left(x^{2} + x + 4\right)}{\left(x^{2} + 1\right)^{2}}$$$.
Respuesta
$$$\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right) = \frac{x \left(x - 1\right) \left(x^{2} + x + 4\right)}{\left(x^{2} + 1\right)^{2}}$$$A